Secure Sockets Layer (SSL)

- Transport layer security service
 - originally developed by Netscape
 - version 3 designed with public input
- Subsequently became Internet standard RFC2246: Transport Layer Security (TLS)
- Uses TCP to provide a reliable end-to-end service
- may be provided in underlying protocol suite, or embedded in specific packages

SSL Protocol Stack

SSL Record Protocol Services

- Message integrity
 - using a MAC with shared secret key
 - similar to HMAC but with different padding
- Confidentiality
 - using symmetric encryption with a shared secret key defined by Handshake Protocol
 - Algorithms negotiated: AES, IDEA, etc.
 - Message is compressed before encryption

SSL Record Protocol Operation
SSL Handshake Protocol

- Allows server and client to:
 - authenticate each other
 - negotiate encryption and MAC algorithms
 - negotiate cryptographic keys to be used
- Comprised of a series of messages in phases
 1. Establish Security Capabilities
 2. Server Authentication and Key Exchange
 3. Client Authentication and Key Exchange
 4. Finish

SSL Change Cipher Spec Protocol

- One of three SSL specific protocols which use the SSL Record protocol
- A single message
- Causes pending state to become current, hence updating the cipher suite in use

SSL Alert Protocol

- Conveys SSL-related alerts to peer entity
- Severity: warning or fatal
- Specific alert
 - fatal: unexpected message, bad record MAC, decompression failure, handshake failure, illegal parameter
 - warning: close notify, no certificate, bad certificate, unsupported certificate, certificate revoked, certificate expired, certificate unknown
- Compressed and encrypted like all SSL data

IP Security

- Various application security mechanisms *e.g.* S/MIME, PGP, Kerberos, SSL/HTTPS
- Security concerns cross protocol layers
- Hence, we would like security implemented by the network for all applications
- Authentication and encryption security features included in next-generation IPv6
- They’re also usable in existing IPv4

IPSec

- General IP Security mechanisms
- Provides
 - authentication
 - confidentiality
 - key management
- Applicable to use over LANs, across public and private WANs, and for the Internet
IPSec Uses

![IPSec Uses Diagram]

- In a firewall/router, provides strong security to all traffic crossing the perimeter
- In a firewall/router, is resistant to bypass
- Is below transport layer, hence transparent to applications
- Can be transparent to end users
- Can provide security for individual users
- Secures routing architecture

Benefits of IPSec

- In a firewall/router, provides strong security to all traffic crossing the perimeter
- In a firewall/router, is resistant to bypass
- Is below transport layer, hence transparent to applications
- Can be transparent to end users
- Can provide security for individual users
- Secures routing architecture

IP Security Architecture

- Mandatory in IPv6, optional in IPv4
- There are two security header extensions:
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
- Key Exchange function
- VPNs want both authentication and encryption, hence usually use ESP
- The specification is complex; described in numerous RFC’s: 2401/2402/2406/2408

Security Associations

- A one-way relationship between sender and receiver that affords security for traffic flow
- Defined by 3 parameters:
 - Security Parameters Index (SPI)
 - IP Destination Address
 - Security Protocol Identifier
- Has a number of other parameters
 - sequence number, authentication header and encryption header information, lifetime, etc.
- An implementation requires a database of Security Associations

Authentication Header (AH)

- Provides support for data integrity and authentication of IP packets
- end system/router can authenticate user/app
- prevents address spoofing attacks by tracking sequence numbers
- Based on use of a MAC: HMAC-MD5-96 or HMAC-SHA-1-96
- Parties must share a secret key

Authentication Header

![Authentication Header Diagram]
Encapsulating Security Payload (ESP)

Key Management
- Handles key generation and distribution
- You typically need 2 pairs of keys; one key per direction for AH and ESP
- Manual key management: system administrator manually configures every system
- Automated key management: An automated system for on demand creation of keys for SA’s in large systems

S/MIME (Secure/Multipurpose Internet Mail Extensions)
- A security enhancement to MIME email
 - original Internet RFC822 email was text only
 - MIME provided support for varying content types and multi-part messages
 - added encoding of binary data to textual form
 - S/MIME added security enhancements
- There is S/MIME support in many mail agents: MS Outlook, Mozilla, Mac Mail, etc.

S/MIME Functions
- Enveloped data: encrypted content and associated keys
- Signed data: encoded message + signed digest
- Clear-signed data: cleartext message + encoded signed digest
- Signed and enveloped data: nesting of signed and encrypted entities

S/MIME Process

S/MIME Cryptographic Algorithms
- Digital signatures: DSS and RSA
- Hash functions: SHA-1 and MD5
- Session key encryption: El Gamal and RSA
- Message encryption: AES, 3DES, etc
- MAC: HMAC with SHA-1
- Must map binary values to printable ASCII: use radix-64 or base64 mapping
S/MIME Public Key Certificates
• S/MIME has effective encryption and signature services
• But also needs to manage public keys
• S/MIME uses X.509 v3 certificates
• Each client has a list of trusted CA’s certs
• And also its own public/private key pairs and certificates
• Certificates must be signed by trusted CA’s

Identification and Authentication
• Identification?
 WHO ARE YOU?
• Authentication?
 PROVE IT!
• Authorization
 WHAT CAN YOU DO?

On-Line Identity
On the Internet, nobody knows you’re a dog.

Copyright © 1993, The New Yorker

Internet Authentication Applications
• Application-level authentication and digital signatures
• Implementations:
 • Kerberos symmetric key authentication service
 • X.509 public-key directory authentication
 • Public-key infrastructure (PKI)
 • Federated identity management

Kerberos
• Trusted key server system from MIT
• Provides centralised secret-key third-party authentication in a distributed network
 • Allows users access to services distributed through network…
 • …without needing to trust all workstations
 • Instead all trust a central authentication server
• Two versions in use: 4 and 5

Kerberos Overview
• A basic third-party authentication scheme
• Two servers (possibly one one machine)
• Authentication Server (AS)
 • users initially negotiate with AS to identify self
 • AS provides a non-corruptible authentication credential (ticket granting ticket TGT)
• Ticket Granting Server (TGS)
 • users subsequently request access to other services from TGS on basis of users TGT
Kerberos Overview

Kerberos Realms
- A Kerberos environment consists of:
 - a Kerberos server
 - a number of clients, all registered with server
 - application servers, sharing keys with server
- This is called a realm
 - typically a single administrative domain
 - For multiple realms, their Kerberos servers must share keys and trust

Kerberos Realms

Kerberos Overview

Kerberos Realms

Kerberos Version 5
- Kerberos v4 is most widely used version
- Also have v5, developed in mid 1990’s
 - specified as Internet standard RFC 1510
- Provides improvements over v4
 - addresses environmental shortcomings
 - encryption algorithm, network protocol, byte order, ticket lifetime, authentication forwarding, inter-realm authentication
 - and technical deficiencies
 - double encryption, non-std mode of use, session keys, password attacks

Kerberos Performance
- Works with larger client-server installations
- Kerberos performance impact is very little if system is properly configured, since tickets are reusable
- Kerberos security is best assured if the server is a separate, isolated machine
- Motivation for multiple realms is administrative, not performance

Certificate Authorities
- A digital certificate consists of:
 - a public key plus ID of the key owner
 - signed by a third party trusted by community
 - often government/bank certificate authority (CA)
 - Goal: bind an identity to a public key
- Users obtain certificates from CA
 - User creates keys and unsigned certificate, gives to CA
 - CA signs certificate, returns to user
- Other users can verify certificate by checking signature on certificate using CA’s public key
X.509 Authentication Service

- Universally accepted standard for formatting public-key certificates
- Widely used in network security applications, including IPSec, SSL, SET, and S/MIME
- Part of CCITT X.500 directory service standards
- Uses public-key cryptography and digital signatures
 - Algorithms not standardised, but RSA recommended

X.509 Certificates

- Functions:
 - Registration
 - Initialization
 - Certification
 - Key pair recovery
 - Key pair update
 - Revocation request
 - Cross certification
 - Protocols: CMP, CMC

Public Key Infrastructure

PKI Management

Federated Identity Management

- Definition: use of a common identity management scheme:
 - Across multiple enterprises and numerous applications
 - Supporting many thousands, even millions of users
- Principal elements are:
 - Authentication, authorization, accounting, provisioning, workflow automation, delegated administration, password synchronization, self-service password reset, federation
- Kerberos contains many of these elements

Identity Management
Federated Identity Management

Standards Used

- **Extensible Markup Language (XML)**
 - characterizes text elements in a document on appearance, function, meaning, or context
- **Simple Object Access Protocol (SOAP)**
 - for invoking code using XML over HTTP
- **WS-Security**
 - set of SOAP extensions for implementing message integrity and confidentiality in Web services
- **Security Assertion Markup Language (SAML)**
 - XML-based language for the exchange of security information between online business partners

Questions