What Operating Systems Need from the Hardware

Bob Brown
Computer Science Department
Southern Polytechnic State University

About Operating Systems

It is possible to write effective operating systems for even very simple hardware.
Early operating systems ran on computers with afew thousand words of memory and a
few dozen instructions. The hardware of the original IBM PC was primitive for itstime,
and yet the PC and the MS-DOS operating system launched the personal computer
revolution.

In this paper, we aren’t talking about primitive operating systems. We will
discuss what is required of the computer hardware for arobust multiprogramming
operating system. Let’s examine that description for aminute. A multiprogramming
operating systemis one that can run two or more programs at the same time, possibly for
two or more users. A robust operating system is one where each user appears to have
complete control of the machine, and where errorsin arunning program can't affect other
programs running at the same time, or the operating system itself. In other words, the
operating system is able to protect itself and the other programs it is running from
malicious or defective programs.

There are three requirements that a robust multiprogramming operating system
must make of the hardware. They are:

Privileged instructions

Protected memory, and

A timer that can generate interrupts.
There are many more things a computer architecture can do to make things easier for
writers of operating systems, but these three are absolute requirements. The other things
can be embodied in either hardware or software, but these three must be in the hardware;
the writer of the operating system cannot “program around” their absence.

Let’s examine each of the requirementsin turn.

Privileged Instructions

It is possible to build computer systems so that there are two classes of machine
instructions. A “ mode bit,” often in the program status word, determines whether the
CPU isin privileged mode or user mode. (Privileged modeis also called supervisor
mode or kernel mode.) When the CPU isin privileged mode, both classes of instructions
are considered to be valid. When the CPU isin user mode, only one class of instructions,
the user mode instructions, isvalid. Attempts to execute privileged instructions while the
CPU isin user moderesult inillegal instruction traps.

Copyright 2001 by Bob Brown



What Operating Systems Need from the Hardware

Why do we need privileged instructions? To keep user programs from doing
things only the operating system should do. Recall that writing a block to disk means
moving the disk head, waiting for the proper sector, then actually doing the write.
Suppose some other program commanded the disk head to move just as your program
started writing. There’' s no telling where your data would end up, but you probably
couldn’t find it again, and it would probably damage something else. Thingslike
physical-level I-O need to be left to the operating system on a multi-user computer, and
the only way to be certain that happensisto prevent user-mode programs from executing
the 1-O instructions.

There are other instructions besides I-O that belong in the privileged set. These
include setting and removing memory protection, setting and resetting system timers, and
many other things that should be handled by a single, well-tested program rather than by
acollection of user programs.

Protected Memory

If all the memory in acomputer is viewed as a single address space, and if any
program can write to any location, some other program can write to memory used by
your program, probably causing your program to crash or produce erroneous results.
Even worse, user programs could write to memory owned by the operating system,
causing the operating system itself to crash.

One way to prevent writes into another program’s memory is to divide memory
into alocation units similar to the page frames of avirtual memory system. When a
program needs memory, it is allocated as one or more pages, and tag bits in the hardware
of the memory subsystem record which program owns each page. Programs may not
write into memory areas they don’t own; attempts generate illegal address traps. In a
refinement, other programs may be allowed to read pages they don’t own depending upon
the setting of a bit. In thisway, asingle copy of program code or static data may be
shared among two or more running programs, Conserving memaory resources.

In computer systems with virtual memory, programs and the operating system
may be protected from each other by giving each its own virtual memory address space.
The virtual memory subsystem of the operating system handles mapping of virtual pages
into real page frames transparently to the running program. Since every possible address
aprogram can generate is within that program’ s address space, writing into another
program’s space isalogical impossibility.

Unfortunately, this approach makes sharing static program code and data a | ogical
impossibility, too. Some operating systems divide the virtual address space in half, with
shared code and data in one half, and “visible’ to al running programs, and private
storage in the other half, protected from both reading and writing.



What Operating Systems Need from the Hardware

A Timer That Can Generate Interrupts

So far we have protected against user programs executing privileged instructions
and against writing to memory they don’t own. That isn’'t quite enough. In ordinary
circumstances, the operating system gets control of the CPU when the running user
program needs an operating system service such as an I-O operating. The operating
system starts the I-O operation, then lets some other program run while the requested
operation completes. In thisway, many programs appear to run simultaneously, and
nearly asfast asif they really had the computer to themselves.

If aprogram got into an infinite (or very long) loop that did not contain any
request for operating system services, the operating system would never get a chance to
run, and so would never let any other programs run. The computer would appear to
freeze up, although in reality the CPU would be executing instructions at full speed.

Infinite loops frequently happen by accident. It iseasy to write amalicious
program that consists only of an infinite loop, and certain numerical calculations, such as
finding large prime numbers, can go on for a very long time without requesting services
of the operating system.

What is needed to prevent these kinds of programs from freezing the computer
system is a hardware timer that generates interrupts. Such atimer counts down avery
small timeinterval, say 100 microseconds, independent of what the CPU isdoing. At the
end of the interval, the timer generates a hardware interrupt that stops the running
program and gives control to the operating system. Even if the running program werein
an infinite loop, the operating system would get control when the timer ran down. It
could then transfer control to another user program that is ready to run.

Malicious programs would still be able to consume their full allotment of CPU
cycles, but they can no longer freeze the entire system. Programs with errors that caused
infinite loops would appear to freeze, but the rest of the system would keep running, and
eventually someone would stop the erroneous program. And programs doing intensive
number crunching will run normally, with minimal impact on the rest of the computer
system.

As arefinement on this technique, the operating system could reset the timer
(using a privileged instruction) just before transferring control to a user program. As
long as operating system resources are being requested frequently enough, timer
interrupts are not needed, and resetting the timer will prevent them from happening.

What About the Logical Equivalence of Hardware and Software?

Y ou may be wondering why we are so insistent that these three functions be
embodied in hardware. After all, we' ve said hardware and software are logically



What Operating Systems Need from the Hardware

equivalent. Couldn’t the writers of operating systems just “program around” these
limitations?

The answer isno. When we say that hardware and software are logically
equivaent, we make the assumption that both the hardware and the software are correct.
We put requirements on the hardware to compensate for the possibility that some
programs that will run on our computer will beincorrect. If we could assume that user
programs would never try to execute forbidden instructions, never write to memory that
doesn’t belong to them, and give up control of the CPU at frequent intervals, then the
hardware described here would be unnecessary. However, experience has shown that it
is not safe to make any of those three assumptions. So, for the operating system to be
robust, support from the hardware is a requirement.



